Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro.
نویسندگان
چکیده
Previous studies have suggested that tubular epithelial-mesenchymal transition (EMT) is an important event in renal tubulointerstitial fibrosis, which is a clinical characteristic of diabetic nephropathy. The present study aimed to investigate the effect of allicin, the major biological active component of garlic, on the EMT of a human renal proximal tubular epithelial cell line (HK-2) cultured under high glucose concentrations. HK-2 cells were exposed for 48 h to 5.5 or 25 mmol/l D-glucose, 25 mmol/l D-glucose plus allicin (2.5, 5, 10 or 20 µg/ml) or 25 mmol/l D-glucose plus 20 µmol/l PD98059, a selective inhibitor of the mitogen activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway. The EMT of HK-2 cells was assessed by analyzing the protein expression of E-cadherin, α-smooth muscle actin (α-SMA), vimentin and collagen I via immunocytochemistry. In addition, reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the expression levels of transforming growth factor (TGF)-β1 and phosphorylated (p)-ERK1/2. Marked morphological changes were observed in HK-2 cells cultured under high glucose conditions, and these changes were abrogated by simultaneous incubation with allicin and PD98059. The expression levels of α-SMA, vimentin and collagen I were significantly increased in HK-2 cells cultured under high glucose conditions, as compared with those cultured under normal glucose conditions (P<0.01). Conversely, the expression levels of E-cadherin were significantly decreased upon stimulation with high glucose (P<0.01). Furthermore, the expression levels of TGF-β1 and p-ERK1/2 were significantly upregulated in HK-2 cells cultured under high glucose conditions, as compared with those cultured under normal glucose conditions (P<0.05). Allicin partially reversed the high-glucose-induced increase in α-SMA, vimentin and collagen I expression (P<0.01 at 20 µg/ml), increased the expression of E-cadherin, and significantly downregulated the high glucose-induced expression of TGF-β1 and p-ERK1/2 in a dose-dependent manner (P<0.05). The results of the present study suggested that high glucose concentrations induced the EMT of HK-2 cells, and that allicin was able to inhibit the EMT, potentially via regulation of the ERK1/2-TGF-β1 signaling pathway.
منابع مشابه
Tubuloepithelial - Myofibroblast Transdifferentiation - Possible Pathogenic Mechanism of Interstitial Fibrosis in Balkan Endemic Nephropathy
Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial disease of unknown etiology. The main morphological feature is interstitial fibrosis and tubular atrophy with absence of inflammatory infiltration. The pathogenesis of BEN is also obscure. Since tubular epithelial cells in the early phase of disease express vimentin as mesenchymal marker in addition to cytokeratin, we could specul...
متن کاملThe Role of the p38 MAPK Signaling Pathway in High Glucose-Induced Epithelial-Mesenchymal Transition of Cultured Human Renal Tubular Epithelial Cells
BACKGROUND Epithelial-mesenchymal transition of tubular epithelial cells, which is characterized by a loss of epithelial cell characteristics and a gain of ECM-producing myofibroblast characteristics, is an essential mechanism that is involved in tubulointerstitial fibrosis, an important component of the renal injury that is associated with diabetic nephropathy. Under diabetic conditions, p38 M...
متن کاملTransforming growth factor-β-induced alpha-smooth muscle cell actin expression in renal proximal tubular cells is regulated by p38β mitogen-activated protein kinase, extracellular signal-regulated protein kinase1,2 and the Smad signalling during epithelial–myofibroblast transdifferentiation
Background. Transforming growth factor-β (TGFβ)induced epithelial–myofibroblast transdifferentiation is a central mechanism contributing to the pathogenesis of progressive tubulo-interstitial fibrosis. We wanted to dissect the role of extracellular signal-regulated protein kinase (ERK1,2), p38 mitogen-activated protein kinase (p38 MAPK) and the receptor-regulated Smad proteins in the regulation...
متن کاملAdvanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE).
Tubulointerstitial disease, a prominent phenomenon in diabetic nephropathy, correlates with decline in renal function. The underlying pathogenic link between chronic hyperglycemia and the development of tubulointerstitial injury has not been fully elucidated, but myofibroblast formation represents a key step in the development of tubulointerstitial fibrosis. RAGE, the receptor for advanced glyc...
متن کاملDelayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy.
Hepatocyte growth factor (HGF) is a renotropic protein that elicits antifibrogenic activity by preventing the activation of matrix-producing myofibroblast cells in animal models of chronic renal diseases. However, whether a delayed administration of HGF can still attenuate renal fibrosis remains uncertain. In this study, we examined the therapeutic potential of exogenous HGF on an established r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental and therapeutic medicine
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2017